use statrs::distribution::{Exp, ContinuousCDF}; // Continuous needed for pdf
// use statrs::statistics::Distribution;
+const DEBUG: bool = false;
+
fn input() -> Vec<String> {
// Consider datastructure some list of strings
let stdin = io::stdin();
fn delta(n: i32) -> Vec<f64> {
let mut prio: Vec<f64> = Vec::new();
const MEAN: f64 = 1.0; // unessential thanks to normalization
+ if DEBUG { eprint!("Delta: ") }
for i in 1..n + 1 {
prio.push(MEAN);
+ if DEBUG {
+ eprint!("i = {}, x = {:.2}; ", i, MEAN);
+ }
}
+ if DEBUG { eprintln!("\x08\x08."); }
prio.reverse();
normalize(prio)
}
const RATE: f64 = 1.0; // rate is unessential thanks to normalization
let mut prio: Vec<f64> = Vec::new();
let dist = Exp::new(RATE).unwrap();
+ if DEBUG { eprint!("Exp: ") }
for i in 1..n + 1 {
let f = i as f64 / (n as f64 + 1.0);
let x = dist.inverse_cdf(f);
+ if DEBUG {
+ eprint!("i = {}, f = {:.2}, x = {:.2}; ", i, f, x);
+ }
prio.push(x);
}
+ if DEBUG { eprintln!("\x08\x08."); }
prio.reverse();
normalize(prio)
}
let _prio1 = delta(num);
let prio2 = exp(num);
+ if DEBUG {
+ for l in ranked.iter() {
+ eprint!("{}, ", l);
+ }
+ eprintln!("\x08\x08.");
}
- eprintln!("");
- eprintln!("That was {} items: {}", num, prio[0]);
output(&prio2, &ranked);